Nonparametric Regression Estimation of Finite Population Totals under Two-Stage Sampling

نویسندگان

  • Ji-Yeon Kim
  • F. Jay Breidt
  • Jean D. Opsomer
چکیده

We consider nonparametric regression estimation for finite population totals for two-stage sampling, in which complete auxiliary information is available for first-stage sampling units. The estimators, based on local polynomial regression, are linear combinations of cluster total estimators, with weights that are calibrated to known control totals. The estimators are asymptotically design-unbiased and design consistent under mild assumptions. We provide a consistent estimator for the design mean squared error of the estimators. Simulation results indicate that the nonparametric estimator dominates standard parametric estimators when the model regression function is incorrectly specified, while being nearly as efficient when the parametric specification is correct. The methodology is illustrated using data from a study of land use and erosion. ∗Department of Statistics, Iowa State University, Ames IA 50011, USA. †Department of Statistics, Colorado State University, Fort Collins CO 80523, USA, [email protected]. ‡Department of Statistics, Colorado State University, Fort Collins CO 80523, USA, [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks for calibration estimation of finite population parameters

Calibration is commonly used in survey sampling to include auxiliary information at the estimation stage. Calibrating the observation weights on the population means (or totals) of the auxiliary variables implicitly assumes on a linear superpopulation regression model. When auxiliary information is available for all units in the population, more complex modeling can be handled by means of model...

متن کامل

Local Polynomial Regression Estimation in Two-stage Sampling

We consider local polynomial regression estimation for nite population totals in two-stage element sampling. The estimators are linear combinations of es-timators of cluster totals with weights that are calibrated to known control totals. The estimators are asymptotically design-unbiased and consistent under mild assumptions. We provide a consistent es-timator for the design mean squared error ...

متن کامل

Nonparametric Survey Regression Estimation in Two-Stage Spatial Sampling

A nonparametric model-assisted survey estimator for status estimation based on local polynomial regression is extended to incorporate spatial auxiliary information. Under mild assumptions, this estimator is design-unbiased and consistent. Simulation studies show that the nonparametric regression estimator is competitive with standard parametric techniques when a parametric specification is corr...

متن کامل

Estimating Distribution Functions from Survey Data Using Nonparametric Regression

Survey sampling often supplies information about a study variable only for sampled elements. However, auxiliary information is often available for the entire population. The relationship of the auxiliary information with the study variable across the sample allows inferences about the nonsampled portion of the population. Thus, auxiliary information can be used to improve upon survey estimation...

متن کامل

Estimation of a Ratio in the Finite Population

Estimation of the ratio of two totals is considered, when a probability sample from the finite population is available. Four estimators of the ratio are examined. The first one – called “simple” – is the ratio of the Horvitz–Thompson estimators of totals; the second – the ratio of two ratio estimators of totals; the third one – the ratio of two regression estimators of totals. The fourth one is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003